Lyapunov-like transformation/matrix on a cone appears in the theory of dynamical systems and linear complementarity problems. The set of all Lyapunov-like transformations on a proper cone in a finite dimensional inner product space is the Lie algebra of the automorphism group of that cone. The dimension of this Lie algebra is called the Lyapunov rank. A pair of proper cones is said to be a nuclear pair if one of them is simplicial. In this paper, we find the Lyapunov rank and Lyapunov-like transformations on the tensor product of nuclear pairs of cones. Further, we prove that the space of Lyapunov-like transformations on the tensor product of a nuclear pair is the tensor product of the spaces of Lyapunov-like transformations on the individual cones. As a consequence, given a nuclear pair (K1,K2), we describe the space of Lyapunov-like transformations on the cone of positive operators between K1 and K2
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.