Multi-agent deep reinforcement learning-based key generation for graph layer security

Abstract

All research work was conducted whilst all authors were at Cranfield University.Recently, the emergence of Internet of Things (IoT) devices has posed a challenge for securing information and avoiding attacks. Most of the cryptography solutions are based on physical layer security (PLS), whose idea is to fully exploit the properties of wireless channel state information (CSI) for generating symmetric keys between two communication nodes. However, accurate channel estimation is vulnerable for attackers and relies on powerful signal processing capability, which is not suitable for low-power IoT devices. In this paper, we expect to apply graph layer security (GLS) to exploit the common features of physical dynamics detected by IoT sensors placed in networked systems to generate keys for data encryption and decryption, which we believe is a new frontier to security for both industry and academic research. We propose a distributed key generation algorithm based on multi-agent deep reinforcement learning (MADRL) approach, which enables communication nodes to cooperatively generate symmetric keys based on their locally detected physical dynamics (e.g., water/gas/oil/electrical pressure/flow/voltage) with low computational complexity and without information exchange. In order to demonstrate the feasibility, we conduct and evaluate our key generation algorithm in both a simulated and real water distribution network. The experimental results show that the proposed algorithm has considerable performance in terms of randomness, bit agreement rate (BAR), and so on.This work has been supported by the PETRAS National Centre of Excellence for IoT Systems Cybersecurity, which has been funded by the UK EPSRC under grant number EP/S035362/1.ACM Transactions on Privacy and Securit

Similar works

This paper was published in CERES Research Repository (Cranfield Univ.).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/