research article

An analysis of constraint-relaxation in PDE-based inverse problems

Abstract

Many inverse problems are naturally formulated as a PDE-constrained optimization problem. These non-linear, large-scale, constrained optimization problems know many challenges, of which the inherent non-linearity of the problem is an important one. In this paper, we focus on a relaxed formulation of the PDE-constrained optimization problem and provide analysis for its properties including convexity under certain assumptions. Starting from an infinite-dimensional formulation of the inverse problem with discrete data, we propose a general framework for the analysis and discretisation of such problems. The relaxed formulation of the PDE-constrained optimization problem is shown to reduce to a weighted non-linear least-squares problem. The weight matrix turns out to be the Gram matrix of solutions of the PDE, and in some cases be estimated directly from the measurements. The latter observation points to a potential way to unify recently proposed data-driven reduced-order models for inverse problems with PDE-constrained optimization. We provide a number of representative case studies and numerical examples to illustrate our findings

Similar works

Full text

thumbnail-image

CWI's Institutional Repository

redirect
Last time updated on 08/03/2025

This paper was published in CWI's Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.