Character/Word Modelling: A Two-Step Framework for Text Recognition in Natural Scene Images

Abstract

Text recognition from images is a complex task in computer vision. Traditional text recognition methods typically rely on Optical Character Recognition (OCR); however, their limitations in image processing can lead to unreliable results. However, recent advancements in deep-learning models have provided an effective alternative for recognizing and classifying text in images. This study proposes a deep-learning-based text recognition system for natural scene images that incorporates character/word modeling, a two-step procedure involving the recognition of characters and words. In the first step, Convolutional Neural Networks (CNN) are used to differentiate individual characters from image frames. In the second step, the Viterbi search algorithm employs lexicon-based word recognition to determine the optimal sequence of recognized characters, thereby enabling accurate word identification in natural scene images. The system is tested using the ICDAR 2003 and ICDAR 2013 datasets from the Kaggle repository, and achieved accuracies of 79.8% and 81.5%, respectively

Similar works

Full text

thumbnail-image

Computer Science Journal (AGH University of Science and Technology, Krakow)

redirect
Last time updated on 20/02/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0