Photoacoustic trace-analysis of breath isoprene and acetone via interband- and Quantum Cascade Lasers

Abstract

This research presents two laser-based photoacoustic approaches for analyzing exhaled breath isoprene and acetone. The integration of a PTR-ToF-MS as a reference device ensured the reliability and accuracy of the photoacoustic systems that is based on an ICL for isoprene and a QCL for acetone detection. The calibration yielded limits of detection of 26.9 ppbV and 1.7 ppbV, respectively, and corresponding normalized noise equivalent absorption coefficients (NNEAs) of 5.0E-9 Wcm 1Hz 0.5 and 4.9E-9 Wcm 1Hz 0.5. Laboratory as well as real breath sample measurements from alveolar breath revealed a robust system performance, with only one outlier within the static isoprene measurements. However, discrepancies emerged under dynamic breath sampling conditions, emphasizing the need for further optimization. Especially by knowing the dynamic nature and endogenous origin of exhaled isoprene our findings highlight the potential of breath analysis for non-invasive physio-metabolic and pathophysiological monitoring towards point-of-care device

Similar works

Full text

thumbnail-image

Publikationsserver der Ostbayerischen Technischen Hochschule Regensburg

redirect
Last time updated on 28/12/2024

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess