Laguerre-type Bernoulli and Euler numbers and related fractional polynomials

Abstract

We extended the classical Bernoulli and Euler numbers and polynomials to introduce the Laguerre-type Bernoulli and Euler numbers and related fractional polynomials. The case of fractional Bernoulli and Euler polynomials and numbers has already been considered in a previous paper of which this article is a further generalization. Furthermore, we exploited the Laguerre-type fractional exponentials to define a generalized form of the classical Laplace transform. We show some examples of these generalized mathematical entities, which were derived using the computer algebra system Mathematica© (latest v. 14.0).FacultyReviewe

Similar works

Full text

thumbnail-image

UVic’s Research and Learning Repository

redirect
Last time updated on 27/12/2024

This paper was published in UVic’s Research and Learning Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0/