On some double Nahm sums of Zagier

Abstract

Zagier provided eleven conjectural rank two examples for Nahm\u27s problem. All of them have been proved in the literature except for the fifth example, and there is no q-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a q-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first q-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras

Similar works

Full text

thumbnail-image

Chalmers Research

redirect
Last time updated on 27/10/2023

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.