Artificial Intelligence systems add significant value to decision-making. However, the systems must be fair because bias creeps into the system from sources like data and preprocessing algorithms. In this work, we explore fairness metrics discussing the shortfalls and benefits of each metric. The fairness metrics are demographic, statistical, and game theoretic. We find that the demographic fairness metrics are independent of the actual target value and hence have limited use. In contrast, the statistical fairness metrics can provide the thresholds to maximize fairness. The Minimax criterion was used to guide the search and help recommend the best model where the error among protected groups was minimum
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.