Quantum Gravity in the Lab. I. Teleportation by Size and Traversable Wormholes

Abstract

With the long-term goal of studying models of quantum gravity in the lab, we propose holographic teleportation protocols that can be readily executed in table-top experiments. These protocols exhibit similar behavior to that seen in the recent traversable-wormhole constructions of Gao et al. [J. High Energy Phys., 2017, 151 (2017)] and Maldacena et al. [Fortschr. Phys., 65, 1700034 (2017)]: information that is scrambled into one half of an entangled system will, following a weak coupling between the two halves, unscramble into the other half. We introduce the concept of teleportation by size to capture how the physics of operator-size growth naturally leads to information transmission. The transmission of a signal through a semiclassical holographic wormhole corresponds to a rather special property of the operator-size distribution that we call size winding. For more general systems (which may not have a clean emergent geometry), we argue that imperfect size winding is a generalization of the traversable-wormhole phenomenon. In addition, a form of signaling continues to function at high temperature and at large times for generic chaotic systems, even though it does not correspond to a signal going through a geometrical wormhole but, rather, to an interference effect involving macroscopically different emergent geometries. Finally, we outline implementations that are feasible with current technology in two experimental platforms: Rydberg-atom arrays and trapped ions

Similar works

Full text

thumbnail-image

Caltech Authors

redirect
Last time updated on 25/07/2023

This paper was published in Caltech Authors.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.