Ph.D. (Integrated) ThesisExpressing and extracting regularities in multi-relational data, where data points are interrelated
and heterogeneous, requires well-designed knowledge representation. Knowledge Graphs (KGs),
as a graph-based representation of multi-relational data, have seen a rapidly growing presence in
industry and academia, where many real-world applications and academic research are either
enabled or augmented through the incorporation of KGs. However, due to the way KGs are
constructed, they are inherently noisy and incomplete. In this thesis, we focus on developing
logic-based graph reasoning systems that utilize logical rules to infer missing facts for the
completion of KGs. Unlike most rule learners that primarily mine abstract rules that contain
no constants, we are particularly interested in learning instantiated rules that contain constants
due to their ability to represent meaningful patterns and correlations that can not be expressed
by abstract rules. The inclusion of instantiated rules often leads to exponential growth in the
search space. Therefore, it is necessary to develop optimization strategies to balance between
scalability and expressivity. To such an end, we propose GPFL, a probabilistic rule learning
system optimized to mine instantiated rules through the implementation of a novel two-stage
rule generation mechanism. Through experiments, we demonstrate that GPFL not only performs
competitively on knowledge graph completion but is also much more efficient then existing
methods at mining instantiated rules. With GPFL, we also reveal overfitting instantiated rules
and provide detailed analyses about their impact on system performance. Then, we propose RHF,
a generic framework for constructing rule hierarchies from a given set of rules. We demonstrate
through experiments that with RHF and the hierarchical pruning techniques enabled by it,
significant reductions in runtime and rule size are observed due to the pruning of unpromising
rules. Eventually, to test the practicability of rule learning systems, we develop Ranta, a novel
drug repurposing system that relies on logical rules as features to make interpretable inferences.
Ranta outperforms existing methods by a large margin in predictive performance and can make
reasonable repurposing suggestions with interpretable evidence
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.