Study on the non-linear deformation and failure characteristics of EPS concrete based on CT-scanned structure modelling and cloud computing

Abstract

Copyright © 2022 The Authors. To understand the complex deformation features and failure mechanisms of expanded polystyrene (EPS) concrete and reveal the composite effect of expanded polystyrene beads and polypropylene fibers, a series of experiments were conducted on the poured EPS concrete specimens. Meanwhile, a cloud computing system for 3D realistic failure process analysis (RFPA3D) was established to model the fine failure process of a real concrete structure. The micromorphology of the EPS concrete specimens was obtained via CT scanning and further processed using digital image processing technology. The Otsu algorithm was applied to automatically recognize the segmentation thresholds of each partition image and a procedure for CT image processing was designed to automatically realize digital image segmentation and merging. Then, the numerical models reflecting the microstructures of the EPS concrete specimens were built using the processed digital images and a series of 3D numerical simulations were performed using cloud-computing-based RFPA3D. The results show that for concrete with low EPS volume fracture, the non-smooth convex-step-shaped failure morphology, which is a typical brittle fracture characteristic, appears. In contrast, ductile fracture occurs for concrete with a high EPS volume fracture. Simultaneously, the addition of polypropylene fibers of a certain length can effectively prevent the formation and expansion of new cracks in the cement matrix. In addition, the peak strength of concrete increases with an increase in homogeneity while the residual strength generally decreases with an increase in homogeneity. Moreover, a more heterogeneous material presented more acoustic emission precursors before macro fracture. All these achievements greatly improve our knowledge of the design, construction, and maintenance of EPS concrete in civil engineering.National Natural Science Foundation of China (Grant No. 42102314); UK Engineering and Physical Sciences Research Council (EPSRC) New Investigator Award (Grant No. EP/V028723/1); China Postdoctoral Science Foundation (Grant No. 2020M680950)

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.