Ph. D. Thesis.Bacterial cell division is a complex process that requires tight co-ordination and regulation of
chromosome replication and segregation, and the synthesis and remodelling of the bacterial
cell wall. The peptidoglycan sacculus is synthesised by peptidoglycan synthases and it is a vital
component of the bacterial cell structure, to withstand the turgor of the cell to prevent its
lysis FtsZ is one of the first proteins to localise at midcell during cell division where it forms a
ring-like structure, the Z-ring, at the inner face of the cytoplasmic membrane. After Z-ring
formation, the divisome is recruited to the division site to form the septum and the
elongasome is positioned at the side wall for elongation. Both the elongasome and the
divisome are dynamic macromolecular complexes composed of numerous proteins at
unknown stoichiometries and it is thought there are proteins in both complexes that are yet
to be discovered. Understanding bacterial cell division at the molecular and cellular level is an
important area of research to enable the development of novel antibiotics as well as
comprehending one of biology’s fundamental questions.
GpsB is a conserved Gram-positive cytosolic protein that plays an important role in the
elongation-division cycle by acting as a scaffold to control the relative spatial arrangements of
peptidoglycan synthases (PBPs). In this thesis the molecular interactions of GpsB with
cytoplasmic mini-domains of PBPs from two human pathogens (Listeria monocytogenes and
Streptococcus pneumoniae) are described using structural and biochemical techniques. The
importance of the critical interacting residues for the GpsB:PBP interaction for cell wall growth
and viability of L. monocytogenes and S. pneumoniae were analysed in collaboration with the
Halbedel, and Massidda and Winkler groups, respectively. A novel function of PBP binding was
introduced into DivIVA, a cell division regulator and GpsB homolog, by protein engineering in
an attempt to understand the functional divergence between GpsB and DivIVA. Potential
building blocks for the development of GpsB:PBP inhibitors were identified in the form of
small fragments by an X-ray crystallography-based fragment screening experiment at
Diamond Light Source.
Eukaryote-like serine/threonine protein kinases (eSTPKs) and partner phosphatases (eSTPs)
are conserved in Gram-positive bacteria. They consist of an intracellular N-terminal kinase
domain and an extracellular sensing region linked by a short transmembrane helix. The
external regulatory region is comprised of three or four PASTA domains that bind to
ii
peptidoglycans and compounds containing beta-lactams. eSTPKs are involved in the
regulation of many cellular processes including development of regulation, control of cell
growth, stress response, virulence and sporulation. The eSTPK/eSTP pair from L.
monocytogenes are PrkA and PrpC.
This thesis concerns the importance of autophosphorylation for the function of the kinase
domain of PrkA (PrkA-KD) and that phosphorylation of serine 173 is crucial for activation,
agreeing with the mechanism of activation of Stk1 in Staphylococcus aureus. The previously
uncharacterised phosphoprotein Lmo1503 (renamed ReoM) is a homologue of IreB from
Enterococcus faecalis, a negative regulator of cephalosporin resistance. It is confirmed that
ReoM is a substrate of the PrkA/PrpC pair and the crystal structure of the full length ReoM
protein is presented. Isothermal titration calorimetry determined the interaction of ReoM and
PrkA-KD is within the nanomolar range and there is a ten-fold reduction in affinity with a PrkAKDS173A mutation. The Halbedel group have linked ReoM phosphorylation to the activation of
ClpCP-dependent degradation of the primary UDP-GlcNAc 1-carboxyvinyltransferase in L.
monocytogenes, MurA. We therefore propose that cell wall integrity sensing by PrkA is
coupled to the first committed step of peptidoglycan synthesis through the intermediate
proteins ReoM and ClpCP
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.