EKMPRFG: Ensemble of KNN, Multilayer Perceptron and Random Forest using Grading for Android Malware Classification

Abstract

Android is the most popular Operating Systems with over 2.5 billion devices across the globe. The popularity of this OS has unfortunately made the devices and the services they enable, vulnerable to numerous security threats. As a result of this, a significant research is being done in the field of Android Malware Detection employing Machine Learning Algorithms. Our current work emphasizes on the possible use of Machine Learning techniques for the detection of malware on such android devices. The proposed EKMPRFG is applied for the classification of Android Malware after a preprocessing phase involving a hybrid Feature Selection model using proposed Standard Deviation of Standard Deviation of Ranks (SDSDR) and several other builtin Feature Selection algorithms such as Correlation based Feature Selection (CFS), Classifier SubsetEval, Consistency SubsetEval, and Filtered SubsetEval followed by Principal Component Analysis(PCA) for dimensionality reduction. The experimental results obtained on two data sets indicate that EKMPRFG outperforms the existing works in terms of Prediction Accuracy and Weighted F- Measure values

Similar works

This paper was published in ePrints@Bangalore University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.