Interfacial fracture toughness of co-cured steel-carbon fiber reinforced plastic (CFRP) hybrid composites were investigated in this paper. To illustrate the effect of the interlayer on the fracture toughness, steel-CFRP hybrid composites were prepared by different manufacturing processes based on steel surface treatment (abrasion or grit blasting) and adhesive-bonding process. The experimental results of double cantilever beam (DCB) tests and end notched flexure (ENF) tests demonstrate that, the Mode I and Mode II interfacial fracture toughness of the hybrid composites can be improved by using a grit blasting surface treatment on steel and introducing an adhesive layer at the steel/CFRP interface. The hybrid composites mainly show fiber/epoxy interfacial failure of CFRP under Mode I loading conditions, while it mostly exhibits adhesive failure of steel/CFRP interface under Mode II loading condition. Moreover, the interfacial tensile strengths of steel-CFRP hybrid composites are predicted by finite element analysis, and both experimental and numerical results confirm the improvement of interfacial fracture toughness
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.