Doctoral Students' Educational Needs in Research Data Management: Perceived Importance and Current Competencies

Abstract

Sound research data management (RDM) competencies are elementary tools used by researchers to ensure integrated, reliable, and re-usable data, and to produce high quality research results. In this study, 35 doctoral students and faculty members were asked to self-rate or rate doctoral students’ current RDM competencies and rate the importance of these competencies. Structured interviews were conducted, using close-ended and open-ended questions, covering research data lifecycle phases such as collection, storing, organization, documentation, processing, analysis, preservation, and data sharing. The quantitative analysis of the respondents’ answers indicated a wide gap between doctoral students’ rated/self-rated current competencies and the rated importance of these competencies. In conclusion, two major educational needs were identified in the qualitative analysis of the interviews: to improve and standardize data management planning, including awareness of the intellectual property and agreements issues affecting data processing and sharing; and to improve and standardize data documenting and describing, not only for the researcher themself but especially for data preservation, sharing, and re-using. Hence the study informs the development of RDM education for doctoral students

Similar works

This paper was published in International Journal of Digital Curation.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.