If a K-contact manifold (M, g) and a D-homothetically deformed K-contact manifold (M,g¯)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}(M,gˉ)\end{document} are both Ricci almost solitons with the same associated vector field V, then we show (i) that (M, g) and (M,g¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}M,gˉ\end{document}) are both D-homothetically fixed η\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}η\end{document}-Einstein Ricci solitons, and (ii) V preserves \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}ϕ\end{document}. We also show that, if the associated vector field V of a complete K-contact Ricci almost soliton (M, g, V) is a projective vector field, then V is Killing and (M, g) is compact Sasakian and shrinking. Finally, we show that the divergence of any vector field is invariant under a D-homothetic deformation
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.