A New Perspective on Terrestrial Hydrologic Intensity That Incorporates Atmospheric Water Demand

Abstract

Hydrologic intensity is often quantified using precipitation without directly incorporating atmospheric water demand. We develop a hydrologic intensity index called the surplus deficit intensity (SDI) index that accounts for variation in supply and demand. SDI is the standardized sum of standardized surplus intensity (mean of daily surplus when supply > demand) and deficit time (mean of consecutive days when demand > supply). Using an observational ensemble of global daily precipitation and atmospheric water demand during 1979–2017, we document widespread hydrologic intensification (SDI; +0.11 z‐score per decade) driven primarily by increased surplus intensity. Using a climate model ensemble of the United States, hydrologic intensification is projected for the mid‐21st century (+0.86 in z‐score compared to 1971–2000), producing greater apparent intensification when compared to an index that does not explicitly incorporate demand. While incorporating demand had a minor effect on observed hydrologic intensification, it doubles hydrological intensification for the mid‐21st century

Similar works

This paper was published in IUScholarWorks Open.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.