oaioai:edpsciences.org:dkey/10.1140/epja/i2016-16022-5

Orthogonal polynomial approach to calculate the two-nucleon transition operator in three dimensions

Abstract

We give a short report on the possibility to use orthogonal polynomials (OP) in calculations that involve the two-nucleon (2N) transition operator. The presented work adds another approach to the set of previously developed methods (described in Phys. Rev. C 81, 034006 (2010); Few-Body Syst. 53, 237 (2012); K. Topolnicki, PhD thesis, Jagiellonian University (2014)) and is applied to the transition operator calculated at laboratory kinetic energy 300MeV. The new results for neutron-neutron and neutron-proton scattering observables converge to the results presented in Few-Body Syst. 53, 237 (2012) and to results obtained using the Arnoldi algorithm (Y. Saad, Iterative methods for sparse linear systems (SIAM Philadelphia, PA, USA 2003)). The numerical cost of the calculations performed using the new scheme is large and the new method can serve only as a backup to cross-check the previously used calculation schemes

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

Provided original full text link
oaioai:edpsciences.org:dkey/10.1140/epja/i2016-16022-5Last time updated on 4/10/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.