Aggregation of omic data and secretome prediction enable the discovery of candidate plasma biomarkers for beef tenderness

Abstract

Beef quality is a complex phenotype that can be evaluated only after animal slaughtering. Previous research has investigated the potential of genetic markers or muscle-derived proteins to assess beef tenderness. Thus, the use of low-invasive biomarkers in living animals is an issue for the beef sector. We hypothesized that publicly available data may help us discovering candidate plasma biomarkers. Thanks to a review of the literature, we built a corpus of articles on beef tenderness. Following data collection, aggregation, and computational reconstruction of the muscle secretome, the putative plasma proteins were searched by comparison with a bovine plasma proteome atlas and submitted to mining of biological information. Of the 44 publications included in the study, 469 unique gene names were extracted for aggregation. Seventy-one proteins putatively released in the plasma were revealed. Among them 13 proteins were predicted to be secreted in plasma, 44 proteins as hypothetically secreted in plasma, and 14 additional candidate proteins were detected thanks to network analysis. Among these 71 proteins, 24 were included in tenderness quantitative trait loci. The in-silico workflow enabled the discovery of candidate plasma biomarkers for beef tenderness from reconstruction of the secretome, to be examined in the cattle plasma proteome

Similar works

Full text

thumbnail-image

ProdInra

redirect
Last time updated on 01/04/2020

This paper was published in ProdInra.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.