Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules

Abstract

We prove a quantitative propagation of chaos and entropic chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier [10] where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.nonnonouirechercheInternationa

Similar works

Full text

thumbnail-image

Base de publications de l'université Paris-Dauphine

redirect
Last time updated on 09/07/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.