Live long and praise TOR: a role for TOR signaling in every stage of plant life

Abstract

From scientific advances in medical research to the plethora of anti-aging products available, our obsession with slowing the aging process and increasing lifespan is indisputable. A large research effort has been levied towards this perpetual search for the fountain of youth, yet the molecular mechanisms governing an organism\u2019s lifespan and the causes of aging are only beginning to emerge in animals and remain largely unanswered in plants. One central pathway in eukaryotes controlling cell growth, development and metabolism, the target of rapamycin (TOR), plays an evolutionarily conserved role in aging and the determination of lifespan. The modulation of TOR pathway components in a wide range of species, including the model plant Arabidopsisthaliana have effects on lifespan. However, the mechanisms enabling some of the longest living species to endure, including trees that can live for millennia, have not been defined. Here, we introduce key TOR research from plant systems and discuss its implications in the plant life cycle and the broader field of lifespan research. TOR pathway functions in plant life cycle progression and lifespan determination are discussed, noting key differences from yeast and animal systems and the importance of \u2018omics\u2019 research for the continued progression of TOR signaling research.yesPeer reviewed: YesNRC publication: Ye

Similar works

Full text

thumbnail-image

NRC Publications Archive

redirect
Last time updated on 29/04/2019

This paper was published in NRC Publications Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.