conference paperreview

Multivariate time series classification with temporal abstractions

Abstract

The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and are potentially useful for classification is enormous. We study and develop a temporal abstraction framework for generating multivariate time series features suitable for classification tasks. We propose the STF-Mine algorithm that automatically mines discriminative temporal abstraction patterns from the time series data and uses them to learn a classification model. Our experimental evaluations, carried out on both synthetic and real world medical data, demonstrate the benefit of our approach in learning accurate classifiers for time-series datasets. Copyright © 2009, Assocation for the Advancement of ArtdicaI Intelligence (www.aaai.org). All rights reserved

Similar works

Full text

thumbnail-image

University of Pittsburgh ETD Submission Page

redirect
Last time updated on 10/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.