A facility coloring problem in 1-D?

Abstract

Abstract. Consider a line segment R consisting of n facilities. Each facility is a point on R and it needs to be assigned exactly one of the colors from a given palette of c colors. At an instant of time only the facilities of one particular color are ‘active ’ and all other facilities are ‘dormant’. For the set of facilities of a particular color, we compute the one dimensional Voronoi diagram, and find the cell, i.e, a segment of maximum length. The users are assumed to be uniformly distributed over R and they travel to the nearest among the facilities of that particular color that is active. Our objective is to assign colors to the facilities in such a way that the length of the longest cell is minimized. We solve this optimization problem for various values of n and c. We propose an optimal coloring scheme for the number of facilities n being a multiple of c as well as for the general case where n is not a multiple of c. When n is a multiple of c, we compute an optimal scheme in Θ(n) time. For the general case, we propose a coloring scheme that returns the optimal in O(n2 logn) time.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.