Skip to main content
Article thumbnail
Location of Repository

Barycentric-Remez algorithms for best polynomial approximation in the chebfun system

By Ricardo Pachon and Lloyd N. Trefethen

Abstract

Variants of the Remez algorithm for best polynomial approximation are presented based on two key features: the use of the barycentric interpolation formula to represent the trial polynomials, and the setting of the whole computation in the chebfun system, where the determination of local and global extrema at each iterative step becomes trivial. The new algorithms make it a routine matter to compute approximations of degrees in the hundreds, and as an example, we report approximation of |x| up to degree 10,000. Since barycentric formulas can also represent rational functions, the algorithms we introduce may also point the way to new methods for computing best rational approximations

Topics: Approximations and expansions, Numerical analysis
Publisher: BIT Numerical Mathematics (Springer)
Year: 2008
OAI identifier: oai:generic.eprints.org:871/core69

Suggested articles

Citations

  1. (1973). A computer program for designing optimum FIR linear phase digital filters,
  2. (2005). A personal history of the Parks-McClellan algorithm,
  3. (1994). A Remez exchange algorithm for orthonormal wavelets,
  4. (2002). Accuracy and Stability of Numerical Algorithms,
  5. (1971). Algorithm 409, discrete Chebychev curve fit,
  6. (1971). Algorithm 414: Chebyshev approximation of continuous functions by a Chebyshev system of functions,
  7. (1959). An algorithm for the determination of the polynomial of best minimax approximation to a function defined on a finite point set,
  8. (2004). An extension of Matlab to continuous functions and operators,
  9. (1968). Applications of linear programming to numerical analysis,
  10. (1966). Approximation of Functions,
  11. (1967). Approximation of Functions: Theory and Numerical Methods,
  12. (1981). Approximation Theory and Methods,
  13. (2004). Barycentric Lagrange interpolation,
  14. (1972). Chebyshev approximation for nonrecursive digital filters with linear phase,
  15. (1982). Choice of basis for Chebyshev approximation,
  16. (1999). Computing complex polynomial Chebyshev approximants on the unit circle by the real Remez algorithm,
  17. (2002). Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding,
  18. (1910). de la Valle´e Poussin, Sur les polynomes d’approximation et la repre´sentation approche´e d’un angle,
  19. (1984). Discrete Chebyshev approximation by interpolating rationals,
  20. (1976). Fortran translation of algorithm 409, Discrete Chebychev curve fit,
  21. (2000). Fundamentals of Approximation Theory,
  22. (1975). Interpolation and Approximation,
  23. (1966). Introduction to Approximation Theory,
  24. Lebesgue constants for Leja points,
  25. (1905). Lec¸ons sur les fonctions de variables re´elles, Gauthier-Villars,
  26. (1959). Numerical methods of Tchebycheff approximation, in On Numerical Approximation,
  27. (1985). On the Bernstein conjecture in approximation theory,
  28. (1960). On the numerical determination of the best approximation in the Chebyshev sense,
  29. Piecewise smooth chebfuns.
  30. (1975). Solution of an overdetermined system of linear equations in the Chebyshev norm,
  31. (2000). Spectral Methods in Matlab,
  32. (1984). Square blocks and equioscillation in the Pade´, Walsh, and CF tables, in Rational Approximation and Interpolation,
  33. (1934). Sur la de´termination des polynoˆmes d’approximation de degre´ donne´e,
  34. (1914). Sur la meilleure approximation de |x| par des polynomes de degre´s donne´s,
  35. (1934). Sur le calcul effectif des polynomes d’approximation de Tchebychef,
  36. (1934). Sur un proce´de´ convergent d’approximations successives pour de´terminer les polynoˆmes d’approximation,
  37. (1964). The Approximation of Functions,
  38. (1959). The determination of the Chebyshev approximating polynomial for a differentiable function,
  39. (2006). The History of Approximation Theory: From Euler to Bernstein, Birkha¨user,
  40. (2004). The numerical stability of barycentric Lagrange interpolation,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.