Skip to main content
Article thumbnail
Location of Repository

The Brauer-Manin Obstruction and Sha[2].

By M.J. Bright, N. Bruin, E. V. Flynn and A. Logan

Abstract

We discuss the Brauer-Manin obstruction on del Pezzo surfaces of degree 4. We outline a detailed algorithm for computing the obstruction and provide associated programs in magma. This is illustrated with the computation of an example with an irreducible cubic factor in the singular locus of the defining pencil of quadrics (in contrast to previous examples, which had at worst quadratic irreducible factors). We exploit the relationship with the Tate-Shafarevich group to give new types of examples of Sha[2], for families of curves of genus 2 of the form y^2 = f(x), where f(x) is a quintic containing an irreducible cubic factor

Topics: Number theory
Publisher: London Mathematical Society
Year: 2007
OAI identifier: oai:generic.eprints.org:797/core69

Suggested articles

Citations

  1. (1987). Arithme´tique des surfaces cubiques diagonales.
  2. (1999). Beyond the Manin obstruction.
  3. (1981). Brauer group and Diophantine geometry: a cohomological approach. In Brauer groups in ring theory and algebraic geometry (Wilrijk,
  4. (1999). Brauer–Manin obstructions on some Del Pezzo surfaces. doi
  5. (1998). Computing a Selmer group of a Jacobian using functions on the curve.
  6. (1986). Cubic Forms. Translated from the Russian by M. Hazewinkel. Second edition.
  7. (1989). Del Pezzo surfaces of degree four.
  8. (2007). Efficient evaluation of the Brauer–Manin obstruction. doi
  9. Electronic resources. Available at http://www.cecm.sfu.ca/~nbruin/ BMObstrAndSha.
  10. (2006). Exhibiting SHA[2] on hyperelliptic Jacobians. doi
  11. (2001). Implementing 2-descent for Jacobians of hyperelliptic curves.
  12. (1987). Intersections of two quadrics and Chaˆtelet surfaces.
  13. (1972). Intersections of two quadrics.
  14. (1992). L’arithme´tique des varie´te´s rationelles.
  15. (1968). Le groupe de Brauer I, II, III. In Dix expose´s sur la cohomologie des sche´mas,
  16. (1970). Le groupe de Brauer–Grothendieck en ge´ometrie diophantienne.
  17. Magma programs for computing the Brauer–Manin obstruction on a Del Pezzo surface of degree 4.
  18. (2005). Principe de Hasse pour les surfaces de del Pezzo de degre´ 4. PhD thesis, Universite´ Paris XI Orsay,
  19. (1993). The Brauer group of cubic surfaces.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.