Skip to main content
Article thumbnail
Location of Repository

Examples of mathematical modeling tales from the crypt

By M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini and S. J. Chapman


Mathematical modeling is being increasingly recognized within the biomedical sciences as an important tool that can aid the understanding of biological systems. The heavily regulated cell renewal cycle in the colonic crypt provides a good example of how modeling can be used to find out key features of the system kinetics, and help to explain both the breakdown of homeostasis and the initiation of tumorigenesis. We use the cell population model by Johnston et al. (2007) Proc. Natl. Acad. Sci. USA 104, 4008-4013, to illustrate the power of mathematical modeling by considering two key questions about the cell population dynamics in the colonic crypt. We ask: how can a model describe both homeostasis and unregulated growth in tumorigenesis; and to which parameters in the system is the model most sensitive? In order to address these questions, we discuss what type of modeling approach is most appropriate in the crypt. We use the model to argue why tumorigenesis is observed to occur in stages with long lag phases between periods of rapid growth, and we identify the key parameters

Topics: Biology and other natural sciences
Year: 2007
OAI identifier:

Suggested articles


  1. Biol
  2. Bodmer
  3. Boman
  4. Hardy
  5. Johnston
  6. Komarova initiation Biol Mathematical doi
  7. Komarova Initiation colorectal cancer: the two hit? Cycle doi
  8. Komarova NL. Cancer, aging and the optimal tissue design. Semin Cancer Biol 2005; 15:494-505. doi
  9. Loeffler Computer cell
  10. Loeffler Kinet
  11. Michor Biol
  12. Michor initiation.
  13. Michor Iwasa cancer 4:197-205. doi
  14. Michor of
  15. Nowak
  16. Nowak The 99:16226-31.
  17. the
  18. Watanabe

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.