Is UV-Induced Electron-Driven Proton Transfer Active in a Chemically Modified A•T DNA Base Pair?

Abstract

Transient electronic and vibrational absorption spectroscopies have been used to investigate whether UV-induced electron-driven proton transfer (EDPT) mechanisms are active in a chemically modified adenine-thymine (A•T) DNA base pair. To enhance the fraction of biologically relevant Watson-Crick (WC) hydrogen-bonding motifs, and eliminate undesired Hoogsteen structures, a chemically modified derivative of A was synthesized, 8-(t-butyl)-9-ethyl-adenine (8tBA). Equimolar solutions of 8tBA and silyl-protected T nucleosides in chloroform yield a mixture of WC pairs, reverse WC pairs and residual monomers. Unlike previous transient absorption studies of WC guanine-cytosine (G•C) pairs, no clear spectroscopic or kinetic evidence was identified for the participation of EDPT in the excited state relaxation dynamics of 8tBA•T pairs, although ultrafast (sub-100 fs) EDPT cannot be discounted. Monomer-like dynamics are proposed to dominate in 8tBA•T

Similar works

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-nc/4.0/