Skip to main content
Article thumbnail
Location of Repository

A theory of quaternionic algebra, with applications to hypercomplex geometry

By Dominic Joyce
Topics: Differential geometry
Publisher: World Scientific
Year: 2001
OAI identifier: oai:generic.eprints.org:85/core69

Suggested articles

Citations

  1. (1990). A hyper-ka¨hlerian structure on coadjoint orbits of a semisimple complex group’,
  2. (1989). A Torelli-type theorem for gravitational instantons’,
  3. (1993). Asymptotically flat complete Ka¨hler manifolds’,
  4. (1978). Asymptotically flat solutions to Euclidean gravity’,
  5. (1979). Geometry of Yang-Mills fields’, Fermi Lectures, Scuola Normale,
  6. (1998). Hypercomplex algebraic geometry’,
  7. (1987). hyperka¨hler metrics and supersymmetry’,
  8. (1990). Instantons and the geometry of the nilpotent variety’,
  9. (1995). Manifolds with many complex structures’,
  10. (1993). Nahm’s equations and complex adjoint orbits’, preprint
  11. (1995). On certain locally homogeneous Clifford manifolds’, preprint
  12. (1988). Poisson algebras and Poisson manifolds’, Pitman Res.
  13. (1979). Polygons and gravitons’,
  14. Quasi-ALE metrics with holonomy SU(m) and Sp(m)’,
  15. (2000). Quaternion Algebraic Geometry’,
  16. (1998). Quaternionic algebra and sheaves on the Riemann sphere’, doi
  17. (1979). Quaternionic analysis’,
  18. (1992). Quaternionic complexes’,
  19. (1989). Riemannian geometry and holonomy groups’, Pitman Res.
  20. Sur les e´quations de Nahm et la structure de Poisson des alge`bres de Lie semi-simples complexes’, to appear in
  21. (1989). The construction of ALE spaces as hyperka¨hler quotients’,
  22. (1988). The geometry and dynamics of magnetic monopoles’,
  23. (1986). The mass of an asymptotically flat manifold’,
  24. (1987). The Yamabe problem’,
  25. (1988). Yang-Mills fields on quaternionic spaces’, doi
  26. (1990). Yang-Mills instantons on ALE gravitational instantons’,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.