Generic systolic array for genetic algorithms

Abstract

The authors present a systolic design for a simple GA mechanism which provides high throughput and unidirectional pipelining by exploiting the inherent parallelism in the genetic operators. The design computes in O(N+G) time steps using O(N2) cells where N is the population size and G is the chromosome length. The area of the device is independent of the chromosome length and so can be easily scaled by replicating the arrays or by employing fine-grain migration. The array is generic in the sense that it does not rely on the fitness function and can be used as an accelerator for any GA application using uniform crossover between pairs of chromosomes. The design can also be used in hybrid systems as an add-on to complement existing designs and methods for fitness function acceleration and island-style population managemen

    Similar works

    Full text

    thumbnail-image

    Central Archive at the University of Reading

    redirect
    Last time updated on 01/07/2012

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.