Skip to main content
Article thumbnail
Location of Repository

Downscaling of monthly precipitation using CMIP5 climate models operated under RCPs

By Umut Okkan and Umut Kırdemir

Abstract

Downscaling of general circulation model (GCM) outputs extracted from CMIP5 datasets to monthly precipitation for the Gediz Basin, Turkey, under Representative Concentration Pathways (RCPs) was performed by statistical downscaling models, multi-GCM ensemble and bias correction. The output databases from 12 GCMs were used for the projections. To determine explanatory predictor variables, the correlation analysis was applied between precipitation observed at 39 meteorological stations located over the Basin and potential predictors of ERA-Interim reanalysis data. After setting both artificial neural networks and least-squares support vector machine-based statistical downscaling models calibrated with determined predictor variables, downscaling models producing the most suitable results were chosen for each meteorological station. The selected downscaling model structure for each station was then operated with historical and future scenarios RCP4.5, RCP6.0 and RCP8.5. Afterwards, the monthly precipitation forecasts were obtained from a multi-GCM ensemble based on Bayesian model averaging and bias correction applications. The statistical significance of the foreseen changes for the future period 2015–2050 was investigated using Student's t test. The projected decrease trend in precipitation is significant for the RCP8.5 scenario, whereas it is less significant for the RCP4.5 and RCP6.0 scenarios.Scientific and Technological Research Council of Turkey (114Y716

Topics: CMIP5 data, ERA-Interim reanalysis data, RCPs, Correcting bias, Multi-GCM ensemble
Publisher: Wiley
Year: 2016
DOI identifier: 10.1002/met.1575
OAI identifier: oai:openaccess.iyte.edu.tr:8080:11147/6080
Provided by: DSpace@IZTECH
Journal:

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.