Skip to main content
Article thumbnail
Location of Repository

Tensor network states and algorithms in the presence of a global SU(2) symmetry

By Sukhwinder Singh and Guifre Vidal

Abstract

The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g. with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely (i) [Phys. Rev. A 82, 050301 (2010)] and (ii) [Phys. Rev. B 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible and multiplicity free, acting as a global internal symmetry. Then in (ii) we described the practical implementation of Abelian group symmetries. In this paper we describe the implementation of non-Abelian group symmetries in great detail and for concreteness consider an SU(2) symmetry. Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multi-scale entanglement renormalization ansatz and apply it to study the low energy spectrum of a quantum spin chain with a global SU(2) symmetry.Comment: 32 pages, 37 figure

Topics: Condensed Matter - Strongly Correlated Electrons, Quantum Physics
Year: 2012
DOI identifier: 10.1103/PhysRevB.86.195114
OAI identifier: oai:arXiv.org:1208.3919

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.