The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral transform method, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force-stress tensor, and couple-stress vector are obtained. The obtained solutions incorporate the characteristic material length scale, which is essential to understand the fluid behavior at microscales. If characteristic length of the couple-stress fluid is zero, the results to the classical fluid are recovered. The influence of the scale parameter on the fluid velocity, axial flow rate, force-stress tensor, and couple-stress vector is analyzed by numerical calculus and graphical illustrations. It is found that the small values of the scale parameter have a significant influence on the flow parameters
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.