An Identity in Commutative Rings with Unity with Applications to Various Sums of Powers

Abstract

Let R=(R,+,·) be a commutative ring of characteristic m>0 (m may be equal to +∞) with unity e and zero 0. Given a positive integer n<m and the so-called n-symmetric set A=a1,a2,…,a2l-1,a2l such that al+i=ne-ai for each i=1,…,l, define the rth power sum Sr(A) as Sr(A)=∑i=12lair, for r=0,1,2,…. We prove that for each positive integer k there holds ∑i=02k-1(-1)i2k-1i22k-1-iniS2k-1-i(A)=0. As an application, we obtain two new Pascal-like identities for the sums of powers of the first n-1 positive integers

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.