Polynomial Chaos Expansion Approach to Interest Rate Models

Abstract

The Polynomial Chaos Expansion (PCE) technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ) method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.