Computing pure Nash and strong equilibria in bottleneck congestion games

Abstract

Bottleneck congestion games properly model the properties of many real-world network routing applications. They are known to possess strong equilibria—a strengthening of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the computational complexity of pure Nash and strong equilibria in these games. We provide a generic centralized algorithm to compute strong equilibria, which has polynomial running time for many interesting classes of games such as, e.g., matroid or single-commodity bottleneck congestion games. In addition, we examine the more demanding goal to reach equilibria in polynomial time using natural improvement dynamics. Using unilateral improvement dynamics in matroid games pure Nash equilibria can be reached efficiently. In contrast, computing even a single coalitional improvement move in matroid and single-commodity games is strongly NP-hard. In addition, we establish a variety of hardness results and lower bounds regarding the duration of unilateral and coalitional improvement dynamics. They continue to hold even for convergence to approximate equilibria

Similar works

Full text

thumbnail-image
Last time updated on 10/14/2017

This paper was published in NARCIS .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.