In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells

Abstract

Gallium and aluminum codoped zinc oxide (GAZO) films were deposited at different temperatures by in-line sputtering. Aluminum is thermally unstable compared to other elements in GAZO films. The grains of GAZO films increase with deposition temperature. Coalescence between grains was observed for GAZO films deposited at 250°C. The deposition temperature exhibits positive influence on crystallinity, and electrical and optical properties of GAZO films. The carrier concentration and mobility of GAZO films increase, while the electrical resistivity of GAZO films decreases with deposition temperature. The average optical transmittance of GAZO films rises with deposition temperature. In-line sputtering demonstrates a potential method with simplicity, mass production, and large-area deposition to produce GAZO films with good electrical and optical quality. The electrical resistivity of 4.3 × 10−4 Ω cm and the average optical transmittance in the visible range from 400 to 800 nm of 92% can be obtained for GAZO films deposited at 250°C. The hybrid organic solar cells (OSC) were fabricated on GAZO-coated glass substrates. Blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were the photoactive materials in OSC. The power conversion efficiency of OSC is 0.65% for the OSC with the 250°C deposited GAZO electrode

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.