Optimization of audio - ultrasonic plasma system parameters

Abstract

The present plasma is a special glow plasma type generated by an audio ultrasonic discharge voltage. A definite discharge frequency using a gas at a narrow band pressure creates and stabilizes this plasma type. The plasma cell is a self-extracted ion beam; it is featured with its high output intensity and its small size. The influence of the plasma column length on the output beam due to the variation of both the audio discharge frequency and the power applied to the plasma electrodes is investigated. In consequence, the aim of the present work is to put in evidence the parameters that influence the self-extracted collected ion beam and to optimize the conditions that enhance the collected ion beam. The experimental parameters studied are the nitrogen gas, the applied frequency from 10 to 100 kHz, the plasma length that varies from 8 to 14 cm, at a gas pressure of β‰ˆ 0.25 Torr and finally the discharge power from 50 to 500 Watt. A sheet of polyethylene of 5 micrometer covers the collector electrode in order to confirm how much ions from the beam can go through the polymer and reach the collector. To diagnose the occurring events of the beam on the collector, the polymer used is analyzed by means of the FTIR and the XRF techniques. Optimization of the plasma cell parameters succeeded to enhance and to identify the parameters that influence the output ion beam and proved that its particles attaining the collector are multi-energetic

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.