Measurement-Based LoS/NLoS Channel Modeling for Hot-Spot Urban Scenarios in UMTS Networks

Abstract

A measurement campaign is introduced for modeling radio channels with either line-of-sight (LoS) or non-line-of-sight (NLoS) connection between user equipment (UE) and NodeB (NB) in an operating universal mobile telecommunications system. A space-alternating generalized expectation-maximization (SAGE) algorithm is applied to estimate the delays and the complex attenuations of multipath components from the obtained channel impulse responses. Based on a novel LoS detection method of multipath parameter estimates, channels are classified into LoS and NLoS categories. Deterministic models which are named “channel maps” and fading statistical models have been constructed for LoS and NLoS, respectively. In addition, statistics of new parameters, such as the distance between the NB and the UE in LoS/NLoS scenarios, the life-distance of LoS channel, the LoS existence probability per location and per NB, the power variation at LoS to NLoS transition and vice versa, and the transition duration, are extracted. These models are applicable for designing and performance evaluation of transmission techniques or systems used by distinguishing the LoS and NLoS channels

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.