Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells

Abstract

An electrochemical reactor can be used to purify flue gasses. Such a reactor can be a multilayer structure consisting of alternating layers of porous electrodes and electrolytes (a porous cell stack). In this work optimization of such a unit has been done by changing the pore former composition and the electrode powder pre-treatment. The effect on permeability, mechanical strength and electrochemical behavior was studied in this work. The effects were evaluated by measuring the pressure difference over the samples in relation to the flow through the sample, by the ball on ring method and by electrochemical impedance spectroscopy in air at temperatures between 300 and 450 °C. The resulting structures were also evaluated with scanning electron microscopy. The work showed a dependence on the pore former composition and electrode powder pre-treatment resulting in variations in porosity, strength and flow resistance. A higher porosity gives a lower backpressure. The electrochemical performance shows that both thickness and amount of pore former in the electrolyte is important, but almost no dependence of electrode composition on the polarization resistances within the tested compositions

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 12/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.