Skip to main content
Article thumbnail
Location of Repository

An engineering understanding of the small intestine

By Monica Rosalia Jaime Fonseca


The main objective of this research was to understand phenomena occurring during food digestion and nutrients absorption in the small intestine from an engineering perspective. Intestinal flow and mixing processes were simulated using a dynamic in vitro Small Intestine Model (SIM). Of particular interest was to study the effect that mixing and food formulation has on glucose absorption and starch hydrolysis.\ud \ud Results showed the effect of segmentation motion on nutrient delivery to the intestinal wall as a consequence of changes in the mass transfer coefficient. This is most likely due to the increased mixing in the SIM. Experiments of starch digestion with and without the presence of guar gum have shown that viscous fibres reduce the rate of starch digestion and glucose absorption by impairing mixing and reducing diffusion within the fluid. Similarly, use of\ud particulate systems demonstrated a significant effect on the delivery rates. Flow visualization techniques used for studying flow paths in the SIM showed that this in vitro model reproduces the characteristic flow events and mixing found in the small intestine in vivo.\ud \ud This research provides insights into the role of mixing on enhancing mass transfer on the course of digestion-absorption processes and also the action of viscous polysaccharides on the delay of glucose absorption in the small intestine. The end findings resulted in a better\ud understanding of the factors which control the development of new functional food that could be applied both in academia and industry

Topics: Q Science (General), QD Chemistry, TA Engineering (General). Civil engineering (General)
Year: 2012
OAI identifier:

Suggested articles


  1. (2000). A theory of molecular absorption from the small intestine.
  2. (2005). Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol.
  3. (2010). Mass Transfer and Nutrient Absorption in a Simulated Model of Small Intestine.
  4. (2006). Product/Process Integration in Food Manufacture: Engineering Sustained Health.
  5. (1999). Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response.
  6. (1985). Reduction of Postprandial Glycaemia by Dietary Manipulation. In: Hunter J.O.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.