Formation of Quenching Structures in the Steel 35 by Deform Cutting

Abstract

In industry different methods of surface hardening are widely used to increase reliability and durability of friction unit parts. Among these methods are areas of focus based on deformcutting technology (DC) i.e. method of chip-free mechanical treatment.It is shown that DC method allows us to produce through- or partial-hardening surface layers of a large thickness (0,4…1.5mm) on steel with no additional heat sources. The standard metal-cutting equipment and common tools are used for deform-cutting process.The significant heat generation in the deform-cutting zone and mechanical effect from the tool allow us to heat undercut layers to the phase transformation point to have the hardening structure as a result of heat removal to the cold balk. The hardening structure formation occurs at significant heating and cooling rate (106C/c) with large degrees and rates of strain.The deform-cutting modes and working face tool grinding determine the type and properties of the hardening structure. To produce the hardening structure would require the heat transfer and force action augmentation while treatment.These researches deal with through- and partial surface hardening samples produced by turning steel 35 shafts. While through hardening the phase transformation carry among the whole thickness of the undercut layer; while partial hardening the hardening interlayer formed on the side of the cutting tool contact.The depth of hardening zone of samples with through hardening layers is 0,5 mm; the depth of hardening zone of partial hardening samples is 0,8 mm. Micro-hardness of the through hardening layers is 653 HV0,1 and 485 HV0,1 for the partial hardening layers. The metallographic analysis shows that the hardening zone formed while deform cutting has disperse structure; there are ferrite ghosts in it.The tempering at temperatures of 200 – 700C showed that the micro-hardness of the hardening structures formed while deform cutting is larger than the micro-hardness of the samples after quenching.There special structures formed while deform cutting demand more in-depth study using different methods of physical-chemical analysis and mechanical testing.</p

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 12/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.