Skip to main content
Article thumbnail
Location of Repository

Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations

By Charina M. Ramirez, Benny Liu, Amal Aqul, Anna M. Taylor, Joyce J. Repa, Stephen D. Turley and John M. Dietschy


Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ∼40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2−/− and npc1−/− mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment

Topics: Research Articles
Publisher: The American Society for Biochemistry and Molecular Biology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.