Article thumbnail

Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli

By Daniel Madar, Erez Dekel, Anat Bren and Uri Alon
Topics: Research Article
Publisher: BioMed Central
OAI identifier: oai:pubmedcentral.nih.gov:3163201
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles

Citations

  1. (2006). Alon U: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Meth
  2. (2008). Alon U: Diverse two-dimensional input functions control bacterial sugar genes. Mol Cell
  3. (1981). An amplified sensitivity arising from covalent modification in biological systems.
  4. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits. 1 edition. Chapman and Hall/CRC;
  5. (1969). An L-arabinose binding protein and arabinose permeation in Escherichia coli.
  6. (2010). AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action.
  7. (2003). AraC protein: A love-hate relationship. BioEssays
  8. (1997). Arkin A: Stochastic mechanisms in gene expression.
  9. (2002). Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics.
  10. (2000). BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
  11. (1974). Comparison of classical and autogenous systems of regulation in inducible operons. Nature
  12. (2006). Construction of Escherichia coli K-12 inframe, single-gene knockout mutants: the Keio collection. Mol Syst Biol
  13. (1984). DE: Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects.
  14. (2004). Design of gene circuits: lessons from bacteria. Nat Rev Genet
  15. (2001). Design principles for elementary gene circuits: Elements, methods, and examples. Chaos
  16. (2003). Design Principles for Regulator Gene Expression in a Repressible Gene Circuit.
  17. (2011). Ecocyc-E.coli K12 MG1655 database. [http://www.ecocyc.com/]. doi:10.1186/1752-0509-5-111 Cite this article as: Madar et al.: Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli.
  18. (1966). Englesberg E: The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta
  19. (1996). Falkow S: FACS-optimized mutants of the green fluorescent protein (GFP). Gene
  20. (1998). From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays
  21. (1972). Helling RB: Induction of the ara operon of Escherichia coli B-r.
  22. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res
  23. (2003). JE: A positive-feedback-based bistable/`memory module/ ’ that governs a cell fate decision. Nature
  24. (2006). JF: Autogenous and nonautogenous control of response in a genetic network.
  25. (2004). Just-in-time transcription program in metabolic pathways. Nat Genet
  26. (2011). KH: Evolutionary design principles and functional characteristics based on kingdom-specific network motifs. Bioinformatics
  27. (2006). ML: Gene network shaping of inherent noise spectra. Nature
  28. (2009). Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression.
  29. (2002). Negative Autoregulation Speeds the Response Times of Transcription Networks.
  30. (1987). Negative feedback regulation of intracellular Ca2+ and the slope of the dose-response curve. Acta Physiologica Scandinavica
  31. (2002). Network motifs in the transcriptional regulation network of Escherichia coli.
  32. (2007). Network motifs: theory and experimental approaches. Nat Rev Genet
  33. (2002). Oudenaarden A: Regulation of noise in the expression of a single gene. Nat Genet
  34. (2009). PD: EcoCyc: A comprehensive view of Escherichia coli biology. Nucleic Acids Research
  35. (2002). RA: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science
  36. (2010). Rebay I: Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development
  37. (2000). Regulation of the L-arabinose operon of Escherichia coli. Trends Genet
  38. (2010). Scarlato V: Regulatory circuits in Helicobacter pylori°: network motifs and regulators involved in metal-dependent responses.
  39. (1998). Schleif RF: Apo-AraC actively seeks to loop.
  40. (1990). Schleif RF: DNA looping and unlooping by AraC protein. Science
  41. (1982). Sensitivity amplification in biochemical systems.
  42. (2000). Serrano L: Engineering stability in gene networks by autoregulation. Nature
  43. (2006). Serrano L: Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol
  44. (2005). Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet
  45. (2008). The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol
  46. (1996). Two positively regulated systems ara and mal. In Escherichia coli and Salmonella: cellular and molecular biology.
  47. (2003). U: Detailed map of a cis-regulatory input function.
  48. (2001). van Oudenaarden A: Intrinsic noise in gene regulatory networks.
  49. (2006). Venkatesh KV: Biological significance of autoregulation through steady state analysis of genetic networks. Biosystems