Article thumbnail

DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage

By Airat Gubaev and Dagmar Klostermeier

Abstract

DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to the DNA-gate of gyrase and wrapping of DNA around the C-terminal domains of GyrA induces a narrowing of the N-gate. This half-closed state prepares capture of a T-segment in the upper cavity of gyrase. Subsequent N-gate closure upon binding of ATP then poises the reaction toward strand passage. The N-gate reopens after ATP hydrolysis, allowing for further catalytic cycles. DNA binding, cleavage, and wrapping and N-gate narrowing are intimately linked events that coordinate conformational changes at the DNA and the N-gate

Topics: Biological Sciences
Publisher: National Academy of Sciences
OAI identifier: oai:pubmedcentral.nih.gov:3161603
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles