Article thumbnail

LacI(Ts)-Regulated Expression as an In Situ Intracellular Biomolecular Thermometer▿

By K. M. McCabe, E. J. Lacherndo, I. Albino-Flores, E. Sheehan and M. Hernandez

Abstract

In response to needs for in situ thermometry, a temperature-sensitive vector was adapted to report changes in the intracellular heat content of Escherichia coli in near-real time. This model system utilized vectors expressing increasing quantities of β-galactosidase in response to stepwise temperature increases through a biologically relevant range (22 to 45°C). As judged by calibrated fluorometric and colorimetric reporters, both whole E. coli cells and lysates expressed significant repeatable changes in β-galactosidase activity that were sensitive to temperature changes of less than 1°C (35 to 45°C). This model system suggests that changes in cellular heat content can be detected independently of the medium in which cells are maintained, a feature of particular importance where the medium is heterogeneous or nonaqueous, or otherwise has a low heat transfer capacity. We report here that the intracellular temperature can be reliably obtained in near-real time using reliable fluorescent reporting systems from cellular scales, with a 20°C range of detection and at least 0.7°C sensitivity between 35 and 45°C

Topics: Methods
Publisher: American Society for Microbiology
OAI identifier: oai:pubmedcentral.nih.gov:3126416
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles