Article thumbnail

Octopamine and occupancy: an aminergic mechanism for intruder–resident aggression in crickets

By Jan Rillich, Klaus Schildberger and Paul A. Stevenson

Abstract

Aggression is a behavioural strategy for securing resources (food, mates and territory) and its expression is strongly influenced by their presence and value. While it is known that resource holders are generally highly aggressive towards intruding consexuals and usually defeat them, the underlying neuronal mechanisms are not known. In a novel intruder–resident paradigm for field crickets (Gryllus bimaculatus), we show that otherwise submissive losers of a preceding aggressive encounter readily fight and often defeat aggressive winners after occupying an artificial shelter. This aggression enhancing effect first became evident after 2 min residency, and was maximal after 15 min, but absent 15 min after shelter removal. The residency effect was abolished following non-selective depletion of biogenic amines from the central nervous system using reserpine, or semi-selective depletion of octopamine and dopamine using α-methyl-tyrosine, but not following serotonin depletion using α-methyl-tryptophan. The residency effect was also abolished by the treatment with phentolamine, an α-adrenergic receptor antagonist, or epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, or by yohimbine, an insect tyramine receptor blocker. We conclude that crickets evaluate residency as a rewarding experience that promotes aggressive motivation via a mechanism involving octopamine, the invertebrate analogue of noradrenaline

Topics: Research Articles
Publisher: The Royal Society
OAI identifier: oai:pubmedcentral.nih.gov:3097829
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles