Article thumbnail

The stochastic quasi-steady-state assumption: Reducing the model but not the noise

By Rishi Srivastava, Eric L. Haseltine, Ethan Mastny and James B. Rawlings


Highly reactive species at small copy numbers play an important role in many biological reaction networks. We have described previously how these species can be removed from reaction networks using stochastic quasi-steady-state singular perturbation analysis (sQSPA). In this paper we apply sQSPA to three published biological models: the pap operon regulation, a biochemical oscillator, and an intracellular viral infection. These examples demonstrate three different potential benefits of sQSPA. First, rare state probabilities can be accurately estimated from simulation. Second, the method typically results in fewer and better scaled parameters that can be more readily estimated from experiments. Finally, the simulation time can be significantly reduced without sacrificing the accuracy of the solution

Topics: Theoretical Methods and Algorithms
Publisher: American Institute of Physics
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles