Location of Repository

Euler diagram-based notations

By John Howse, R. Bosworth, Andrew Fish, Gem Stapleton, J. Taylor, P. Rodgers and S. Thompson


Euler diagrams have been used for centuries as a means for conveying logical statements in a simple, intuitive way. They form the basis of many diagrammatic notations used to represent set-theoretic relationships in a wide range of contexts including software modelling, logical reasoning systems, statistical data representation, database search queries and file system management. In this paper we survey notations based on Euler diagrams with particular emphasis on formalization and the development of software tool support

Topics: G100 Mathematics
Publisher: University of Brighton
Year: 2006
OAI identifier: oai:eprints.brighton.ac.uk:2996

Suggested articles



  1. (2002). A case study of the design and implementation of heterogeneous reasoning systems, doi
  2. A constraint diagram reasoning system. doi
  3. (2005). A decidable constraint diagram reasoning system. doi
  4. (2005). A new language for the visualization of logic and reasoning.
  5. (2003). A reading algorithm for constraint diagrams. doi
  6. (2000). A sound and complete diagrammatic reasoning system, doi
  7. (2004). A survey of reasoning systems based on Euler diagrams. doi
  8. (2001). A survey of Venn diagrams. doi
  9. (2005). An experimental study into the default reading of constraint diagrams. doi
  10. Automated theorem proving in Euler diagrams systems. doi
  11. (2004). Automated theorem proving with spider diagrams. doi
  12. (2005). Collaborative Knowledge Capture in Ontologies. doi
  13. (2002). Comparing the efficacy of visual languages. In
  14. (2003). Computing reading trees for constraint diagrams. doi
  15. (1999). Constraint Diagrams: a step beyond UML,
  16. (1997). Constraint diagrams: Visualizing invariants in object oriented modelling. doi
  17. (2004). Drawing graphs in Euler diagrams. doi
  18. (2004). Dynamic Euler diagram drawing. doi
  19. (2004). Ensuring the Drawability of Extended Euler Diagrams for up to eight Sets. doi
  20. (1999). Formalising spider diagrams. doi
  21. (2005). Generalized Venn diagrams: a new method of visualizing complex genetic set relations. doi
  22. (2002). Generating Euler diagrams. doi
  23. (2004). Generating proofs with spider diagrams using heuristics. doi
  24. (2004). Generating readable proofs: A heuristic approach to theorem proving with spider diagrams. doi
  25. (2004). Heterogeneous reasoning with Euler/Venn diagrams containing named constants and FOL. doi
  26. Implementing Euler/Venn Reasoning Systems. In doi
  27. (2004). Investigating reasoning with constraint diagrams. doi
  28. (2003). Layout metrics for Euler diagrams. doi
  29. (1995). Logic and Visual Information, doi
  30. (2004). Nesting in Euler diagrams: syntax, semantics and construction. doi
  31. (1990). Object-oriented process specification, doi
  32. (1987). Object-oriented subsystem specification, doi
  33. (2002). On diagram tokens and types. doi
  34. (2000). On the completeness and expressiveness of spider diagram systems. doi
  35. (1959). On the Construction of Venn Diagrams. doi
  36. On the diagrammatic and mechanical representation of propositions and reasonings. The London, Edinburgh and Dublin Philosophical Magazine and doi
  37. (2000). Patching up a logic of Venn diagrams.
  38. (2000). Positive semantics of projections in Venn-Euler diagrams, doi
  39. (2001). Positive semantics of projections. doi
  40. (2005). Precise visual modelling. doi
  41. (2005). Projected contours in Euler diagrams.
  42. (2000). Projections in Venn-Euler diagrams. doi
  43. (2006). Reasoning with Diagrams website. www.cs.kent.ac.uk/projects/rwd/,
  44. (2004). Reasoning with projected contours. doi
  45. (1999). Reasoning with spider diagrams. doi
  46. (2005). Representing Specified Values in OWL: “value partitions” and “value sets”.
  47. (2000). SD2: A sound and complete diagrammatic reasoning system, doi
  48. (1997). Spatial logic and the complexity of diagrammatic reasoning.
  49. (2001). Spider diagrams: A diagrammatic reasoning system. doi
  50. (2005). Spider diagrams. doi
  51. (1930). Sur le probleme des courbes gauches en topologie.
  52. (1971). Symbolic Logic. Burt Franklin,
  53. Tableaux for diagrammatic reasoning.
  54. The constraint diagrams editor. Available at www.cs.technion.ac.il/Labs/ssdl/research/cdeditor/.
  55. (2004). The expressiveness of spider diagrams augmented with constants. doi
  56. (2004). The expressiveness of spider diagrams. doi
  57. (1998). The information content of Euler/Venn diagrams.
  58. (1994). The Logical Status of Diagrams. doi
  59. (1999). The Object Constraint Language: Precise Modeling with UML. doi
  60. (2005). The semantics of augmented constraint diagrams. doi
  61. (2004). Towards a default reading for constraint diagrams. doi
  62. (2001). Towards a Formalization of Constraint Diagrams, doi
  63. (2002). Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference. doi
  64. (2005). Using Euler Diagrams in Traditional Library Environments. doi
  65. (2005). Version 2.0, available from www.omg.org.
  66. (2006). Visual Modelling Group: www.cmis.bton.ac.uk/research/vmg,
  67. (2004). What can spider diagrams say? doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.