Haldane relation for interacting dimers

Abstract

We consider a model of weakly interacting close-packed dimers on the two-dimensional square lattice. In a previous paper, we computed both the multi-point dimer correlations, which display non-trivial critical exponents, continuously varying with the interaction strength; and the height fluctuations, which, after proper coarse graining and rescaling, converge to a massless Gaussian field with a suitable interaction-dependent pre-factor ('amplitude'). In this paper, we prove the identity between the critical exponent of the two-point dimer correlation and the amplitude of this massless Gaussian field. This identity is the restatement, in the context of interacting dimers, of one of the Haldane universality relations, part of his Luttinger-liquid conjecture, originally formulated in the context of one-dimensional interacting Fermi systems. Its validity is a strong confirmation of the effective massless Gaussian field description of the interacting dimer model, which was proposed on the basis of formal bosonization arguments. We also conjecture that a certain discrete curve defined at the lattice level via the Temperley bijection converges in the scaling limit to an SLE κ process, with κ depending non-trivially on the interaction and related in a simple way to the amplitude of the limiting Gaussian field

Similar works

Full text

thumbnail-image

Archivio della Ricerca - Università di Roma 3

redirect
Last time updated on 10/08/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.