Quantum Entanglement Generation in Trapped Ions Using Coherent and Dissipative Methods


Entangled states are a key resource in fundamental quantum physics, quantum cryptography, and quantum computation. In this thesis, we focus on the demonstrations of two novel methods to generate entanglement. First, we implement dissipative production of a maximally entangled steady state on two trapped ions. Dissipative and coherent processes are combined and implemented in a continuous time-independent fashion, analogous to optical pumping of atomic states, continuously driving the system towards the steady entangled state. With this method, we obtain a Bell state fidelity up to 0.89(2). Second, we propose and demonstrate a novel coherent process to confine quantum evolution in a subspace between an initial separable state and the target entangled state. We demonstrate this scheme on two and three ions obtaining a Bell state fidelity up to 0.992(2). Both of these methods are robust against certain types of experimental noise and decoherence. Additionally, we demonstrate sympathetic cooling of ion chains to near the ground state of motion with an electromagnetically-induced-transparency (EIT) method. This results in roughly an order of magnitude faster cooling time while using significantly lower laser power compared to the conventional resolved sideband cooling method. These techniques may be helpful for scaled-up quantum computing

Similar works

Full text


CU Scholar Institutional Repository

Provided original full text link
oaioai:scholar.colorado.edu:phys_gradetds-1152Last time updated on 8/7/2017

This paper was published in CU Scholar Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.